Solution 12

Supplementary Problems

1. (Optional) Let Ω be a region in space which is bounded by a smooth closed surface S.
(a) Use the divergence theorem to derive the formula of volume of Ω :

$$
|\Omega|=\frac{1}{3} \iint_{S}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n} d \sigma
$$

where \mathbf{n} is the outer unit normal at S.
(b) Assume that Ω is contained in a ball of radius R. Derive the inequality

$$
|\Omega| \leq \frac{1}{3} R|S|
$$

where $|S|$ is the surface area of S.
(c) Find a region Ω so that the inequality in (b) becomes equality.

Solution.

(a) We choose the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Then $\nabla \cdot \mathbf{F}=3$ and, by the divergence theorem,

$$
\iint_{S}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n} d \sigma=\iiint_{\Omega} \nabla \cdot \mathbf{F} d \sigma=3|\Omega|
$$

(b) Using the inequality $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}|$ for vectors \mathbf{a}, \mathbf{b}, we have

$$
|(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n}| \leq|\mathbf{x}||\mathbf{n}| \leq R
$$

It follows that

$$
\begin{aligned}
|\Omega| & \leq \frac{1}{3}\left|\iint_{S}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n} d \sigma\right| \\
& \leq \frac{1}{3} R\left|\iint_{S} d \sigma\right| \\
& =\frac{1}{3} R|S|
\end{aligned}
$$

(c) Take S to the sphere of radius R with center at the origin. Then the right hand side of this inequality becomes $4 \pi R^{3} / 3$ which is equal to the left hand side of this inequality.

